PHYSICAL REVIEW E 67, 036102 (2003
Defect structures in the growth kinetics of the Swift-Hohenberg model
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The growth of striped order resulting from a quench of the two-dimensional Swift-Hohenberg model is
studied in the regime of a small control parameter and quenches to zero temperature. We introduce an algo-
rithm for finding and identifying the disordering defecthslocations, disclinations, and grain boundarigsa
given time. We can track their trajectories separately. We find that the coarsening of the defects and lowering
of the effective free energy in the system are governed by a growth (& t* with an exponenk near 1/3.

We obtain scaling for the correlations of the nematic order parameter with the same growth law. The scaling for
the order parameter structure factor is governed, as found by others, by a growth law with an exponent smaller
thanx and near to 1/4. By comparing two systems with different sizes, we clarify the finite-size effect. We find
that the system has a very low density of disclinations compared to that for dislocations and fraction of points
in grain boundaries. We also measure the speed distributions of the defects at different times and find that they
all have power-law tails and the average speed decreases as a power law.
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[. INTRODUCTION boundaries shrink. In this case one sees a crossover to an
effective growth exponent=1/2.

What are the defects which control the long-time ordering We give below a detailed numerical study of the statistical
of systems growing a striped pattern? This question arises iproperties of the defects disrupting striped pattern formation
a variety of physical contex{d]. Here we are motivated by in the SH model. In order to carefully discuss the defects we
the recent experimenfg,3] investigating the ordering of a Nneed a reliable filter for finding them. We present an algo-
two-dimensional diblock copolymer system. The system”thm which effectively locates defects and grain boundaries
studied offers a physical realization of the ordering in anfor any control parametee. We can distinguish between

isotropic two-dimensional smectic material. In these experidrain boundaries and other defects, and track their trajecto-

ments they found that the late-time ordering satisfies scalinff€S Separately. We compare this method to the other ap-
roaches used in earlier work in Appendix A.

with a growth lawL ~t* with x=1/4, and the final stages of Th ber of fch terizing the d
ordering are governed by the annihilation of sets of disclina- ere are a numoer o wa}/s of characterizing the degree
f ordering in these system§) Counting the number and

tion quadrapoles. In this paper we address the question: 2 . . LS o
the ordering in this physical system described by the Swift>12€ of defects and their evolution with tim@.,) Monitoring

. the lowering of the average effective driving free energy as a
Hohenberg SH) model[4], the simplest model one can con- ¢ tion of time. il ) Evaluation of the nematic order param-

struct to govern the ordering in stripe forming systems?  g(a correlation function and its associated scaling behavior.
We investigate the growth kinetics of the Swift- () Eyaluation of the order parameter structure factor and its

Hohenberg model for a small control paramete~(Q.1) i associated scaling behavior. We find ttiat(ii), and(iii) can

two dimensions and quenches to zero temperature. It is thig|| e characterized by a single growth law with the exponent

regime which appears most likely to correspond to the exnear 1/3, while the order parameter scaling, as found by

perimental situation. In large regime the system evolves to others, is characterized by a growth law with the exponent

a glassy state. We focus primarily on the defect structuregear 1/5.

generated in the ordering of the system. In the most naive

picture of this ordering process one can think in terms of an Il. SWIFT-HOHENBERG MODEL

initial local layering, as in a smectic, in some direction. This

ordering can be disrupted by point defects: dislocations and The Swift-Hohenberg model for a scalar order parameter

disclinations. This suggests a coarsening picture with annihi’ is specified by the equation of motion

lating point defects similar to the case of tk& model[5] »

and a growth law with exponemt=1/2. This simple picture o 3 2, v2)2

is not seen in simulations. We find, in agreement with the at =y (dot VTt L, @

numerical results of Hoet al.[6] and Boyer and Vials[7],

that the defect structures for the SH model are dominated bwheree is a positive control parameteyy is the magnitude

grain boundaries that persist for long times. Unlike the casef an ordering wave number angl is the Gaussian noise

of an XY model, the ordering is not dominated by annihila- satisfying(Z(r,t){(r',t"))=28(r—r")8(t—t"), where the

tion of isolated point defects. These are observed but are naowise strengthi’ is proportional to the final temperature gov-

the dominant structures. erning the system after a quench. We will focus here on
We find numerically, at late times after finite-size effectsquenches to zero temperature, where we card’sahd the

enter, that the system becomes anisotropic, and the graimise { to zero. We are interested in the growth kinetics
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problem where we prepare this system initially in a com- . V (x)
pletely disordered state. We then allow the system to evolve n(x)= Vo] (11
forward in time to form a striped pattern. For example, one
could choose and the associated nematic order parameter
($(X,to) Y(Y.t0)) =5 8(x—Y), ) .1
Qup=Qo| NN~ > Oapl- (12)

where W3 is a constant. However, the precise form of the
initial conditions is not importan(ts]. In two dimensions, however, all of the information in this

This model can be formulated as a Langevin equatiorbrder parameter is contained in the quantity cés@here
driven by an effective Hamiltonian, n=(cosh,sind). It is easy to show, for example, that

HE:J d2X| _ §¢2+ %¢4+ %[(qg+ VZ) l/l]Z . (3) Cnn(x,y,t)52<Tr Q(X,t)Q(y,t)>t
=(cog (e(x,t)—o(y,t) ], (13
If we introduce
where
B()=(He), “ o(x,t)=20(x.). (14)

where the average is over an ensemble of initial conditionq,f we define
thenE(t) is lowered as the system orders in a striped pattern

with wave numben. B —P2_ 2 (15
Eventually the system approaches an ordered state de- X Ty
scribed approximately by the single-mode approximaf®in B —onF 16
where, assuming layering along thelirection, y= <Ny, (16)
0=Ap COSpZ. (5) then
If we put this ansatz into Eq(3), assume that the system is Can(X,y, 1) =(B(x,t)-B(y,1));. (17)

an integral number of wavelengths in tkedirection, and
minimize with respect to the amplitudé,, we obtain the
results,

The nematic order parameter correlation functiyp was
shown by Christensen and Br@¥0] to obey scaling in the
conventional form

a2_e © Con(1 ) =F(r/L(1)), (18)

wherer =x—Yy. Elder, Virals, and Granf11] showed that the
scaling of the order parameter structure factor

S(k,t) = (| (1)|D=Ls(t)F1((k—ao)Ls(t)) (19

and differs from that observed in ordering system without stripes:
S(k,t) =L2(t)F,(kL(t)).

Qo (27/do 2€
(V3= f (Ao cosdgz)*dz=—, (7)

Eeq: - =S (8)
6 Ill. REVIEW OF PREVIOUS WORK

whereS is the area of the system. Pomeau and Manneville The early work on this problem focused on establishing
[8] have shown that this is a very good approximation for thethe final equilibrium state reached after a quench. This is a
“ground” state even for moderately large valuesefin the ~ two-dimensional system and by forming stripes one has a
growth kinetics context the approach to equilibrium is moni-broken continuous symmetry. The behavior of the system at

tored by nonzero temperatures, as for the two dimensiohéimodel,
requires, as pointed out by Toner and Nelfb?)] a treatment
AE(t)EE(t)—Eeqochl(t) (9)  of both long wavelength fluctuations in the layers and free
defects. Above a Kosterlitz-Thouless type transition one has
and an isotropic phase, while below this transition one has a
phase with persistent orientational order.
AP0 =(g) — (PPl N (D), (10) In an early paper, Elder, Vais, and Grant11] carried out
a numerical analysis leading to the scaling solution given by
whereLg(t) <L ,(t) [9]. Eq. (19). Working with fixede=0.25 they looked at the sys-
Another measure of the ordering in the system is given bytem’s ordering as a function of noise stren@ithThey found
considering the director field a qualitative difference between low noise and high noise.
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For the large noise case they found a rapgstponentigl  of grain boundary motiorj14]. Elsewhere[15], they also
relaxation to the asymptotic stationary state and a power-layoint out for larger values of, the dynamics cross over to a
approach for the lower noise case. Their results are in agreérozen state with quenches to zero temperature. This glassy
ment with the picture due to Toner and Nelson that one has behavior is associated with grain boundary pinning.
transition to an isotropic state for large enough noise. There

is no real ordering in the isotropic state, and this is why there

is exponential decay to the equilibrium state. In the ordered IV. NUMERICAL RESULTS FOR SH MODEL
state one has scaling and a power-law growth law which, for )
small noise, they found to have an exponggt 1/4. They We present here our numerical results for the SH equa-

found a smaller exponent,= 1/5 at low temperatures, but tion: We follow the numericallp'rescriptions of Bray and

they had less statistics and there appeared to be “difficultf-hristensen(10]. We use the finite difference scheme on

removing defects.” They argued for a late-time crossover tgWo-dimensional lattice of sizes 25&56 and 51X 512

the expected x 1/2, but they did not see this. with periodic boundary conditions. We set=0.1, A+rl
Cross and Meirofi13] also studied the SH model numeri- = /4, and At=0.03. We replacedyy(r,t) by (¢

cally in the absence of noise. They found ey 1/4 for e~ — #i})/At, andV2y(r,t) by

=0.25. The dynamics appear to freeze for higkermhey

looked at the defect structure, but in a qualitative way noting

the existence of domain walls rather than a set of isolated V2 1 |2 1 10 ”
point defects. The theoretical discussion in their paper is l/fij—(AX)Z 326 3 i » (22)
based on the phase-field approximation

W_(D”V” +D,V?)g, (200  where NN and NNN mean the nearest neighbors and next-

nearest neighbors, respectively. By choosing the proper scale
of time, space, and the order parameter, we camgetl.

The systems have eight grid points per wavelength. We used
uniformly distributed random initial conditions.

which from the most naive point of view suggests a growth
law with exponentx=1/2. They discuss some selection

mechanisms which could lead) and D, to adjust them- For the smaller 258 256 systems we were able to follow

selves to zero and reduceto 1/3 or 1/4. They concluded he orderina brocess to verv late stages. Some of the inde-
that they did “not have a good theoretical understanding 01I 9P y ges.
endent trials proceed to a final state where we have a set of

these results” and suggested that the defects in the problen%e” alianed lavers
should be treated explicitly. 9 YErs.

. . In Fig. 1 we plotAE(t) andA?(t) for an ensemble of
nurl;:gtji,C;ars;:ua:tr;dvssh?é(:]egaegslé?ﬂ[;igozn;lrr;e:dl%ewi(iﬁs runs on a 25& 256 lattice. We note that there are two re-
.25, X

zero noise, ands= 1/4 with nonzero noise as obtained from gimes wherd.g defined by Eq(9) is described by different

the structure factor scaling. They went further and used §XPONeNts. Folts=t<t; (t;~300 andt,~9000) we find
simple method to identify domain walls and measure theife ™~ 0-3: While fort>t; we findxg~0.5. The crossover at
lengths(more about this beloy They measured excess en- t~1. appears to be due to the f|n_|te-3|ze .effects, as we .d|s-
ergy AE(t) and the domain wall length, and found that theyCuss beIQW' Fot>t, _the system is effectively anisotropic
show the same scaling exponents 1/4 at zero noise and O.S%rfd WE_} find an effective exponemz,g near 1/2.
nonzero noise. The energy does go to the lowest order in N Fig. 2 we plotAE(t) andA#“(t) for a 512<512 sys-
value of — €2/6 in the noiseless limit. They find “defects are tem. In this case we see thathas been extended to much
indeed the driving force behind the coarsening process due {8"ger values and we have not been able to follow the order-
its dominant contribution to the excess energy.” They suginNg process to completion. Our fits toE(t) andAy*(t) in
gest that the phase-field approach gives the wrong exponerfie regimet;<t<t; again gives, to higher accuracyg
because it does not include the effects of defects. For larger =Xy=1/3. . _ _ _ .
(=0.75) they found much slower logarithmic growth. The To probe directly the stripes’ increasingly orientational
system seems to become glassy. order, we measure theematicorder parameter correlation
Christensen and Bray10] also carried out numerical functionCyy(r,t) in the 512<512 system. The results, aver-
work on the SH model foe=0.25 and foundks=1/5 for aged over 57 runs, are shown in Fig. 3. We obtain scaling
zero noise and=1/4 for nonzero noise. From scaling of With @ correlation length obeying the growth lawot®%.
the director correlation function they find exponents are 0.25 Ve can estimate the tintg when the crossover begins in this
and 0.30 for zero and nonzero noise. They suggest that thel@/ger system as follows. The system becomes anisotropic
is a crossover tac=1/2 at very long times. The theory they @nd one expects crossover when the correlation lebgth
developed does not include defects. grows to be some substantial fraction of a lateral dimension
Boyer and Virals [7] point out “Near the bifurcation ©f the system. In terms of ratios we can write
threshold, the evolution of disordered configurations is domi-
nated by grain boundary motion through a background of s
largely immobile curved stripes.” They find for smadlan Ln(te(512) 512 [t(512)
exponentx=1/3 which they interpret as arising from a law L. (t(256)) 256 |t.(256)

(22)
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FIG. 1. (Colon AE(t) and Ay?(t) for a 256<256 system.
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FIG. 2. (Colon AE(t) andA¢2(t) for a 512<512 system. The

data fort<tg are not shown. The straight lines are used to guide the

Straight lines are used to fit different parts. Averaged over 40 trialseye. Averaged over 57 different trials.

In the 256256 systemt.(256)~9000, so we obtain spacings. At a more fundamental level we need a way of
t.(512)~60 000. Notice that in Fig. 2 the effective exponentidentifying which points in space, at the level of each site on
xg begins to increase at time 50 000—70 000, which is conthe numerical grid, are part of a defect. At the shortest length
sistent with our estimate. scale in the problem the order parameteQis; defined by

In Fig. 4 we plot the structure fact&(k,t) and show that

scaling holds in the form given by E¢19) with a growth 1 ‘ —
law characterized by an exponent=0.24 as shown in the .
inset. Our results here agree with those found previously that 0.8- _
the exponent governing the growth law for the structure fac-
tor is significantly smaller than that governing the nematic PP\ |
order parameter. =
© 045 1000 16000 100000
V. DEFECT STRUCTURES AND DYNAMICS t J
In Fig. 5 we show a typical configuration for the Swift- 0.2- A
Hohenberg model for a quench to zero temperature after a
time 12000 for a 51512 system. Notice the rather com- O35 100 150 200
plicated structure which includes dislocations, disclinations, T

and grain(domain boundaries. Our main focus in this paper g, 3. Time evolution of the correlation functid®,(r,t) in
is to study the statistics of these defects. In Appendix A Wane 512512 SH system illustrated with times >&L0°,1.2
discuss an algorithm for picking out the defects and trackingx 10*,1.8x 10* increasing from left to right. We extract the time
their motions. evolution of the correlation length(t) by monitoring ther ,(t) for

If we look at Fig. 5 we see that it shows a complicatedwhich C,,,(r ,(t))=«, where we chooser={0.3,0.4,0.5,0.6,0}7
situation with a variety of different defect structures which The scaling exponen, is extracted from the log-log plot inset of
can be identified by eye at the length scale of several layar,(t) vst by fitting it with a straight line. Averaged over 57 trials.
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center,” see Appendix A. The dislocation moves along the arrow. It
FIG. 4. (Colon The structure facto8(k,t)=(|#(k,t)|?) in the starts at =1590 and disappears &t 29 220. Notice the small arcs
512x 512 system. The log-log plot &(q,,t) vst can be fit totX along the curve, the diameters of the arcs are abatjt\#hich is
with x=0.24. The scaling collapse of the structure factor was ob-equal to two layer spacing.

tained withx=0.24 as the scaling exponent. Averaged over 57 in- ) ) ) ) ]
dependent trials. and identify defect points as those sites whérés larger

than some value. Notice th# can also be written in the

Eq. (12). For this two-dimensional system this can be re-om

placed by the vector order parameBedefined by Eqs(15)
and (16). The assumption is that all of the defects in the A=42, (V,np)2=(V,p)2. (29)
system can be built up from the 3 disclinations in the «p

director fieldn which translate into vortices with chargel The precise numerical determination Afis discussed in
for the field B. We identify these defects by looking for the Appendix A. Notice thatA is proportional to the gradient
cores of the vortices. We can find the cores of the defects bgnergy for an isotropic nematic.
looking from those sites whef is changing rapidly. We can [N analyzing their experimental data Harrisenal. [2,3],
define found a set ofundamentadisclinations and from these built
up dislocations as bound disclinations with opposite charge.
They used this procedure to identify a large dislocation den-
AZE (VC,BB)Z, (23) sity. Mo_st of the funqlame_ntal disclinations_went i_nto for_ming
these dislocations since in the end the ratio of dislocations to
the remaining disclinations was about 10—1. In our case the
situation is complicated by the grain boundaries. We first
separate the defects into compact point defects and larger
grain boundaries. For the point defects we determine the to-
pological charge by taking the usual phase-angle path inte-
gral around the center of mass of the defect. Those defects
with plus or minus unit charge are identified as disclinations,
while those with zero charge are dislocations. Then we can
track the motion of each single defect.

As an example of the method we show in Fig. 6 the path
of a dislocation. We see that some dislocations travel over
long distances during very long times. It seems that the dis-
locations are more stable when compared to grain boundaries
and disclinations. Our simulations on 26856 system show
that after the annihilation of point defects and grain bound-
aries, some dislocations still exist in the system. Our simu-
lations show that there are also dislocations which are pinned
and move little.

The number of disclinatins is quite small. And we notice
that they are rather immobile, which is consistent with Boyer
and Virals’ discussior7].

FIG. 5. Atypical configuration for the SH model for a quenchto ~ The most important motion of grain boundaries is that
zero temperature aftér=12 000 in a 51X 512 system. The black they can move over long distances and combine with other
points correspond tg/(x)>0 and the white points tg/(x)<O0. grain boundaries. As shown in Fig. 7, two grain boundaries

»

@,

N
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FIG. 7. The combination of two grain boundaries in a 500 @ 500 ® '
512%x512 system. The portion shown is 20R00. From left to right
and top to bottom, the times are=2880,2955,3030,3105,3180, 3 3
4710. Not all the points in the grain boundaries are shown. B =
400 et 1 400F 1
can combine to form a larger grain boundary. Thus the num-
ber of grain boundaries decreases while their average siz: e,
increases. This process happens at a time scale of the ord
of 1000 dimensionless time units. ‘ ,
As shown in Fig. 8, one grain boundary can sweep across ** X 04y 500 300 X 4y 500
a quite large area. At the same time its size decreases. Thi <00
process occurs at a time scale of the order of 10 000. Accord ®
ing to our observations, the grain boundaries’ motions also _
relieve the stripe curvatures through disclination annihila- 3
tions. After one grain boundary passes through a disclination >
the disclination disappears. This is consistent with Boyer and 4001 1
Vinals’ prediction[7].
Next we focus on the statistics of the defects generated by
the model. In Fig. 9 we plot the total number of points in
grain boundaries, dislocations, and disclinations separately 205 0
for the 256< 256 system. We see that the grain boundaries X (m/4)

dominate. In the scaling regimés&t<<t.), we see that the
number of points corresponding to grain boundaries and all
defect points, the curvessandb can be fit to~t~ 3, At late

FIG. 8. The motion of a grain boundary in a 51812 system.
The portion shown is 200200. From left to right and top to bot-

stages the disclinations disappear, while the dislocations andm, the times aré=11 415,13 665,15 915,18 165,20 415,22 665,
grain boundaries persist. The number of disclinations de24 915,27 165,29 415. Again not all the points in the grain bound-

creases much faster than the other defects.
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FIG. 9. (Color) The number of points in point defects and grain ~ FIG. 11. (Color) The average number of points in defects and
boundaries in the 256256 system. The data for all defects and grain boundaries in the 532512 system. Most of the points are in
domain walls are averaged over 40 trials. The others are averagdtfain boundaries. All the curves can be fit #f0”. The data for
over 38 trials. defects and domain walls are averaged over 57 trials, and the other

data are averaged over 20 trials.

In Fig. 10 we plot the average number of grain boundaries _ ) —
N and the average size of a grain bounderfor the In Fig. 12 we plot the number (igram boundariesind
256x 256 system. We use the number of points in one grairthe average size of a grain boundarfor 512x< 512 system.

boundary as a measure of its size. Esrt<t,, N decreases All of our data fall in the scaling regime. The plot of the

but | increases due to the combining of grain boundaries2Verage numben of grain boundaries versus tiniecan be

The shrinkage of their sizes is not as important as the confit to n~t~%*°and the average sidevs timet, can be fit by
binations. However, fot,~9000 the correlation length, is | ~t%Y". So we havenl ~L *~t~ %3 which is consistent
the same order as the system’s size, and the large graimith the results shown in Fig. 11.
boundaries stop growing. After that the shrinkage is impor- Although we did not count the number of disclinations
tant[16]. In the scaling regimet(<t<t,), n~t"945and] directly, it is proportional to the number of lattice points in
~913 Sonl~t~Y3 which is consistent with Fig. 9. disclinations, i.e.t.*°-57. This is because the average number
In Fig. 11 we plot the total number of points in grain of Iattlcg points in one point dlscllr_1at|on,_ which is about
boundaries, dislocations, and disclinations separately for the0—20; iS quite stable during the simulation. By the same
512x512 system. The number of points in disclinations igfeasoning, we find that the number of dislocations is propor-

. 71/3 . . .
much smaller than that of dislocations, and at very late stagei®nal tot == It is interesting to note that the number of

it decreases to the order of 1, which in fact indicates thedrain boundaries scales as®*. This exponent is near to
disappearance of disclinations. Now the scaling regime exthat for disclinations. o

tends to much longer times. The domain walls and disloca- "€ number of grain boundaries is about g &t70 000,
tions’ scaling exponents are both 1/3, which is same to thd1€ number of disclinations is about 0 or 1tat50 000, and
scaling of the energy. However, the scaling exponent of disth® number of dislocations is on the order of 10 tat
clinations, given by 0.57 is much larger. So we conclude that™ 50 000, as can be seen in Figs. 11 and 12.

disclinations are not the dominant structures in SH system. Sinceé we can track the motion of each defect, we can
measure their speeds. We define the speed of each as the

10p T

Average size of grain boundaries 1
25,

—_
g
T
I
[
=
(=3
T
1

Number of grain boundaries n
N3
=

Number of grain boundaries n
~
Average size of grain boundaries 1
i,
IS

1000 10000 1000 10000 , , ‘ ,
Time Time 1000 10000 1000 10000
Time Time

FIG. 10. The average number of grain boundaries and the aver- L
age number of points in a grain boundary. 2586 system aver- FIG. 12.n andl vs time in the 51X 512 system. The data are
aged over 40 trials. averaged over 57 independent trials.
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FIG. 13. (Color) A typical example of probability densitp vs
speedv for the speed distribution of dislocations at time 1350 for
the 512<512 system. The distributions at other times have approxi-
mately the same shape. Averaged over 56 trials. FIG. 15. (Color The average speed for defects and grain bound-

aries. From top to bottom, the curves have the forgxt™> with
speed of its mass centéxee Appendix A for the definition of v, being a constant. From top to bottoms 0.35+0.01, x=0.41
“mass center’). If in a time A 7, the mass center travels over +0.01, andx=0.48+0.01. Averaged over 56 independent trials.
a distanceAd, then the speed is=Ad/A 7. If A7 is small

enough, we found that=0 has the biggest probability. If disappeared, the mean value of the grain boundaries’ expo-
A7 is large enough, all the details are coarse-grained, and Weents is —1.50 and that of point defects’ exponents is
observe a continuous distribution of the speed and the largest2 10.

probability appears at a nonzero speed, as shown in Fig. 13, we also measured the average speed of the point defects
whereA 7=60. We measured the speed distributions of do-and grain boundaries as a function of time after the quench,
main walls, and point defects separately. As we have alreadys is shown in Fig. 15. The average speed of point defects

seen, for point defects the number of disclinations is muchjecreases ast 248 the average speed of grain boundaries
smaller than that of dislocations, so what we measure in thgpes as-t 035 The scattering of the points at late stages is

latter case is in fact the speed distribution of dislocations. q,e to the small data sample at those times.
The speed distribution has a long tail which decreases as a

power law. The numerical fits at different times give us dif-

ferent exponents. However the tail exponents at different VI. SUMMARY

times do distribute in a narrow region, as shown in Fig. 14.

The exponents of grain boundaries are quite different fro .

those ol?‘ point defgcts. If we ignore theqexponents at ver he SH model after quenches_to zero temperature_: with acon-

early times when grain boundaries just begin to form, and aTtrOI parameter ofe=Q.1._ We. find in agreement W'th earlier

the very late times when the grain boundaries have alread quer; that the kinetics in the. ordering regime, before
nite-size effects enter, are dominated by the existence of

moving and coalescing grain boundaries. In this regime the
average size of these grain boundaries is growing and they
are relatively mobile. Under the influence of finite-size ef-
fects these grain boundaries shrink, the system becomes an-
isotropic and the ordering process speeds up.

We also measured the speed distribution of all structures
that appear in the system. The average speed is decreasing as
a power law and the distributions show a power-law behav-
iors at large speeds. However, we can only get a rough esti-
mate due to the poor statistics.

1000 10000
Time

We have studied the dynamics of the defect structures in

S

—
n

|
[\

The tail exponent y
, o
(9,

! HZ'rla::eb‘:;f:;;;ez,};lf].5 ] Let us return to the question of whether the SH model

3.5F = point defects, y=-2.1 . gives a good description of the physical system studied by
Harrisonet al.[2,3]. The SH model, for small control param-

4 etere, does give coarsening with an exponent in roughly the

L | ' | L 1 L | ' | L
0 5000 10000 }FS.OOO 20000 25000 30000 same range as in the experiment (2/43). The ordering is
me constrained to be slower than the picture where one has a
FIG. 14. (Color) The power-law exponents of the speed distri- Simple point defect pair annihilation process. However, the
bution’s tail at different times. Ignoring the data points at very earlydefect structures in the SH model and experiment appear
times and very late times, the mean value of the exponents iguite different. The disclination quadrapole annihilations
— 1.5 for grain boundaries; 2.1 for point defects, anet 1.7 for all ~ seen in experiments are not observed in the late stages of the
the defects. Averaged over 61 independent trials. evolution of the SH model. In the SH model grain bound-

036102-8



DEFECT STRUCTURES IN THE GROWTH KINETICS . . . PHYSICAL REVIEW E 67, 036102 (2003

aries dominate the evolution in the scaling regime, but thesehere

structures appear to play a limited role in the experiments.

We must make clear that our numerical results are for sys- Au(X)

tems with many fewer roll periods compared to the experi- g(x):arctay( Y ) ) (A3)
mental systems (fCcompared to 1%), so it is possible that Ny(X)

things change as we increase the size of the ordering system.

However, our study of 256 and 512 systems shows that thefgather than using(x) given by the two equations above we
differ only in the time when the finite-size effect enters. Thisintroduce some local smoothing. First we compute
indicates that a even larger system will display the same

behavior except that the finite-size effect enters at a even gyzsingp(x)zzﬁx(x)ﬁy(x),

later time. So we conclude that the SH model does not give

a physically faithful description of the ordering in the experi- R R

mental system. This raises the provocative question: Are B,=C0s@(X)=2n,(x)2—1. (A4)
there many different types of scenarios for ordering striped

systems? We will address this question by looking at othedhen we smooth these two fields using the iterative process
competing models for striped formation elsewhere.

R S .
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the four nearest neighbors df,{) on the square lattice. This

process will suppress the small fluctuations ¢dfx) away

APPENDIX A: THE ALGORITHM FOR PICKING OUT from the defects, while the variation @f(x) near a defect
DEFECTS AND FINDING DOMAIN WALLS core remains large. Our calculations show that five iterations

Hou et al. [6] proposed a method, the HSG method toprovides a sufficiently smooth set of fields for our purposes.

measure the length of grain boundaries. They computed thlé‘ the ne>_<t step, we calculate(x) from sing(x) and
quantityA?= 4+ (V ¢)?/q3, and if the calculated? is big- cose(x) using
ger than an upper filter 0.7A?) max+0.3 (A?) 4 OF smaller
than a lower filter 0.{A?)min]+0.3(A%) e, that point is
counted as belonging to a domain wall. Wheis small, this
method gives quite good results.

However, whene increases, the original filters are no where we adopt the convention thatr < ¢(x) <.
longer applicable. They fail to pick out most of the points In picking a filter we want to look at the spatial variation
and the filters must be rechosen. For example=a0.6, the  of the ¢(x) field. V¢(x) can be evaluated as foF y(x).
filters 0.5(A%) naxt0.5(A%) ave and 0.582).,,+0.5(A%) ... However, there is a subtlety here. For examplegif ;;
can give a satisfying result; while far=0.75, 0.40%).x =7—d¢, and ¢i—1j=—m+ 5y, wheredep, and 5¢, are
+0.6(A%) e, and 0.40%)i,+0.6(A%),. are the better small angles, then the difference between the nematic tensors
choices. Sometimes this method is unable to pick out all th&® ,4(i+1,j) and Q,z(i—1,j) should be a small quantity.

sing(X)
COoSp(X)

: (AB)

o(X)= arcta+

defects for any choice of filter. But  (¢it1j—@i-1))2=7—(8p1+ 6py)/2~m,  which
We introduce here a method which works for alland  means that if we calculate the change rate(f) in exactly
picks out all of the defects and nothing more. the same way as in EGAL), we will get a wrong answer in

First let us define some useful quantities. Suppose thehis context. To avoid such a problem, we define the differ-
system is discrete on they plane, withx=(i,j) (square ence betweew(x) and¢(x") as the quantity with the small-
lattice). At a fixed time, starting from the order parameterest absolute value among the choicgéx’)— ¢(x) and
field ¢/(x) = ¢ ;, we can define a director fieft(x) as given ~ ¢(X') —¢(X) = 27. And we use this quantity in determining
by Eq.(11), whereV (x) is defined by the usual finite dif-

ference scheme, i.e., AX)=|Ve(x)|? (A7)
o which is the key quantity in our analysis.
Vi(x)= l//'“;A;//'_l" , w"”;A;’/j"’_l . (AD Our method is based on the observation that at the core

region of a defectdislocation, disclination, or part of a do-
main wal), the angle fieldp(x) changes rapidly, while in the
" region away from the defect’s core, tlggx) field is rather
smooth, as can be seen in Fig. 16. Thus we can conclude
with confidence that those points with larger change rates of
¢(X) must belong to some defect’s core region or a part of a
e(X)=20(x), (A2)  grain boundary.

where Ar is the lattice space of the system. In two
dimensional cases the nematic order param@tgy is com-
pletely specified by the angle
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FIG. 16. In the lower graph, the vector fidldose(X),sin¢(X)]
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100

FIG. 17. (Colon) In the lower graph, the scalar fieldi(x) is
plotted. This corresponds to the order parameter field shown above.

A(X) is sharply peaked at the core regions of the defects.

not be neighbors. So we define a fileg, and when any two
points’ distance is less tham, they are supposed to be in the
same defect or grain boundary’s core region. We use the
cluster multiple labeling method of Hoshen and Kopelman
[17] to pick out such point clusters. Thus given the system’s
status at any time, we can find those sets of points corre-

for the order parameter field shown above. The components of thgponding to each individual defect or grain boundary.
vector field have been smoothed over five iterations. The lattice Now we measure the approximate size of these structures,
spacing isw/4, which means there are eight points in one period ofand then distinguish between point defects and grain bound-

the layers. Not all the vectors on the lattice are shown.

aries. We use the number of points in the set as the size of the

We find thatA(x)~0 away from defects, but increases -
very rapidly in the vicinity of any defect. An example is \
given in Fig. 17. Therefore, as long A¢x) is large enough,
we can identify the poink=(i,j) as part of the core region

of a defect. Naturally we set up a threshélgl and any point = o
with 4(Ar)?A(x)>A, is counted as belonging to some de- 3 *ve S 2L
fect's core. Because the value A{x) is much larger in the L b !
defects’ cores than at any other places, a range of values of ¥ -
A, can be used to find the positions of the defects core re- iy, /

gions. With a smaller threshold the program will pick out f

more points in the core regions, and with a larger one it will
pick out fewer points in the core regions. Our experience
shows that ifA, takes the value of 2 10, the program picks 'f iy
out the same defects cores and grain boundaries. As is shown
in Figs. 18 and 19, it picks out all the defects without irrel-
evant points.

After we have used the above algorithm to pick out the
points in the core regions of the point defects and grain S *
boundaries, we can distinguish between these two structures. "
The difference between them is obvious. The point defects
are compact in space while the grain boundaries are ramified.

First, we must group the points we have identified accord-

FIG. 18. (Color) Identification of all the defects in a 5K512

ing to whether or not they are in the same structure. Th&ystem ¢=0.1) with a threshold,=3.5. At each defect core re-
points in one point defect core or grain boundary are picke@jion, theA field for many points exceeds the threshold. The red
out because the director field changes drastically on thosgoints belong to domain walls, the green ones belong to disloca-
sites. They are very near to each other. However, they maytons, and the blue ones belong to disclinations.
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f NN\ 1 = simulation. We then identify all the dislocations, disclina-
i\ ( _"" 1 J f e tions, and grain boundaries, distinguish among them, and
—_ T, j o= 'l compute theircenters of massSuppose at time¢;, we have

/ » the set ofmass centers R{p;,i=1,2,...n;} and at time

i
‘ . ] &
™ } A \ # "'\ t,, the mass center set @={q;,j=1,2,...ny}; usually
5 % . wa 4 % ni#n,. Definedpq(i,j)=|p;—q;|. We assume that the de-
"t 3 - S fects and grain boundaries do not move much in such a
~ short-time period. So if there exist two integees [1,n4]
/ andl e[1,n,], such that

MM @\

dpo(k,l)= min dpg(k,j)= min dpg(i,l), (A9
2 pllcl)= min deqllcf)= min dogli1).  (A9)

ie[1n]

o 2

] 3 A . 8

» ‘ 2 it is quite reasonable to believe that and g, are just the

! = Y e same defect’s or grain boundary’s mass center at two succes-
sive times. Using this method, we are able to find out the
trajectories of the mass centers as time goes on. Not all
points in P and Q can be grouped into such pairs. On one

L / hand, this is becaus®, # n,; on the other hand, this is also
Tl —_— due to criterion(A9) applied ontgp, andq, . Physically, this
FIG. 19. (Color) Identification of all the defects in a 5xk512 IS consistent with the phenomena of the defect annihilation

system €=0.5) again with a threshold,=3.5. Apparently the and the combination, split and shrinkage of grain boundaries.
defect’s density in this system is greater than the density in Fig. 18.

The domain walls are much smaller for the system with lakger APPENDIX B: MEASUREMENT OF THE NEMATIC
There are no domain walls fer>0.6. CORRELATION FUNCTION

F
-

)
)
~
S

[
)

] - l\l’

corresponding structure. This approximation reflects the ac- To probe the stripes’ increasingly orientational order, we
tual size of the defect or grain boundary quite well. Then wedefine the correlation function that is similar to that em-
define a filterl 5, and when the structure’s size is larger thanployed by Christensen and Br&y0]:
lo, we regard the corresponding structure as a grain bound-
ary, otherwise it is taken to be a point defédislocation or 1
disclination. _ B

We employeda,=5 Ar, whereAr is the lattice spacing Con(r,0)= N2 zx: {cosle(x+r.H=e(xH])
andl,=18. The results are quite satisfying.

After we have picked out the point defects, we can devide
them into disclinations and dislocations. We follow Harri- =\ ; (cosg(x+r,t)cose(x,1))
son’s method2,3]. Given the angle fieldr(x) computed in
Eq. (A6) after the smoothing process, we do an integral of 1
the variation of¢(x) over a counterclockwise close path +— E (sinp(x+r,t)sin(x,t)), (B1)
around the mass center of a point defect, which is defined N® x

below. The condition for a defect to be a disclination is _
whereN? is the area of the system and the angular brackets

P denote the statistical average over different initial conditions.
jQ —‘pds= + 2 (A8)  The definition of the angle(x) is given in Appendix A.
Js Now in Eq.(B1) the function has been split into two parts

which have the same form,
The integral is zero if the defect is a dislocation. To make the

computation easier, we choose aXlB square with the
mass center at its center as the integration route. 1

To record the motion of one single defect or grain bound- G(r,Hy= = > (f(x+r,H)f(xb), (B2)
ary, we track the motion of the corresponding point set's N= X
mass center, which is defined as follows. Suppose the point_ )
set has points with coordinates;, i=1,2, ... n. Thenthe With f(x,t)=cose(x,t) and f(x,t)=sine(x,t) separately.
mass center of the point set is defined asS;r; /n, just like ~ Equation(B2) can be easily calculated by fast Fourier trans-
the usual mass-center definition in classical mechanics, bd@rmation (FFT). First FFT f(r,t) is to obtain its Fourier
with all masses equal to one. components (k,t). ThenG(k,t)={[f(k,t)|?), and inverse

In the evolution of the SH model, we sample the systemFourier transformation give&(r,t). We compute the two
every 500 time stepén our case this is equal to 15 dimen- parts in Eq.(B2) separately, and then add to obtain the cor-
sionless time units which is a quite short-time period in the relation functionC,(r,t).
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