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Defect structures in the growth kinetics of the Swift-Hohenberg model

Hai Qian and Gene F. Mazenko
James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637

~Received 21 October 2002; published 10 March 2003!

The growth of striped order resulting from a quench of the two-dimensional Swift-Hohenberg model is
studied in the regime of a small control parameter and quenches to zero temperature. We introduce an algo-
rithm for finding and identifying the disordering defects~dislocations, disclinations, and grain boundaries! at a
given time. We can track their trajectories separately. We find that the coarsening of the defects and lowering
of the effective free energy in the system are governed by a growth lawL(t)'tx with an exponentx near 1/3.
We obtain scaling for the correlations of the nematic order parameter with the same growth law. The scaling for
the order parameter structure factor is governed, as found by others, by a growth law with an exponent smaller
thanx and near to 1/4. By comparing two systems with different sizes, we clarify the finite-size effect. We find
that the system has a very low density of disclinations compared to that for dislocations and fraction of points
in grain boundaries. We also measure the speed distributions of the defects at different times and find that they
all have power-law tails and the average speed decreases as a power law.

DOI: 10.1103/PhysRevE.67.036102 PACS number~s!: 05.70.Ln, 64.60.Cn, 64.75.1g, 98.80.Cq
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I. INTRODUCTION

What are the defects which control the long-time order
of systems growing a striped pattern? This question arise
a variety of physical contexts@1#. Here we are motivated by
the recent experiments@2,3# investigating the ordering of a
two-dimensional diblock copolymer system. The syst
studied offers a physical realization of the ordering in
isotropic two-dimensional smectic material. In these exp
ments they found that the late-time ordering satisfies sca
with a growth lawL'tx with x51/4, and the final stages o
ordering are governed by the annihilation of sets of discli
tion quadrapoles. In this paper we address the question
the ordering in this physical system described by the Sw
Hohenberg~SH! model@4#, the simplest model one can con
struct to govern the ordering in stripe forming systems?

We investigate the growth kinetics of the Swif
Hohenberg model for a small control parameter (e50.1) in
two dimensions and quenches to zero temperature. It is
regime which appears most likely to correspond to the
perimental situation. In largee regime the system evolves t
a glassy state. We focus primarily on the defect structu
generated in the ordering of the system. In the most na
picture of this ordering process one can think in terms of
initial local layering, as in a smectic, in some direction. Th
ordering can be disrupted by point defects: dislocations
disclinations. This suggests a coarsening picture with ann
lating point defects similar to the case of theXY model @5#
and a growth law with exponentx51/2. This simple picture
is not seen in simulations. We find, in agreement with
numerical results of Houet al. @6# and Boyer and Vin˜als @7#,
that the defect structures for the SH model are dominated
grain boundaries that persist for long times. Unlike the c
of an XY model, the ordering is not dominated by annihil
tion of isolated point defects. These are observed but are
the dominant structures.

We find numerically, at late times after finite-size effec
enter, that the system becomes anisotropic, and the g
1063-651X/2003/67~3!/036102~12!/$20.00 67 0361
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boundaries shrink. In this case one sees a crossover t
effective growth exponentx51/2.

We give below a detailed numerical study of the statisti
properties of the defects disrupting striped pattern format
in the SH model. In order to carefully discuss the defects
need a reliable filter for finding them. We present an alg
rithm which effectively locates defects and grain boundar
for any control parametere. We can distinguish betwee
grain boundaries and other defects, and track their traje
ries separately. We compare this method to the other
proaches used in earlier work in Appendix A.

There are a number of ways of characterizing the deg
of ordering in these systems:~i! Counting the number and
size of defects and their evolution with time.~ii ! Monitoring
the lowering of the average effective driving free energy a
function of time.~iii ! Evaluation of the nematic order param
eter correlation function and its associated scaling behav
~iv! Evaluation of the order parameter structure factor and
associated scaling behavior. We find that~i!, ~ii !, and~iii ! can
all be characterized by a single growth law with the expon
near 1/3, while the order parameter scaling, as found
others, is characterized by a growth law with the expon
near 1/5.

II. SWIFT-HOHENBERG MODEL

The Swift-Hohenberg model for a scalar order parame
c is specified by the equation of motion

]c

]t
5ec2c32~q0

21¹2!2c1z, ~1!

wheree is a positive control parameter,q0 is the magnitude
of an ordering wave number andz is the Gaussian noise
satisfying^z(r ,t)z(r 8,t8)&52Gd(r2r 8)d(t2t8), where the
noise strengthG is proportional to the final temperature go
erning the system after a quench. We will focus here
quenches to zero temperature, where we can setG and the
noise z to zero. We are interested in the growth kineti
©2003 The American Physical Society02-1
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problem where we prepare this system initially in a co
pletely disordered state. We then allow the system to evo
forward in time to form a striped pattern. For example, o
could choose

^c~x,t0!c~y,t0!&5C0
2 d~x2y!, ~2!

where C0
2 is a constant. However, the precise form of t

initial conditions is not important@5#.
This model can be formulated as a Langevin equat

driven by an effective Hamiltonian,

HE5E d2xH 2
e

2
c21

1

4
c41

1

2
@~q0

21¹2!c#2J . ~3!

If we introduce

E~ t !5^HE& t , ~4!

where the average is over an ensemble of initial conditio
thenE(t) is lowered as the system orders in a striped patt
with wave numberq0.

Eventually the system approaches an ordered state
scribed approximately by the single-mode approximation@8#
where, assuming layering along thez direction,

c05A0 cosq0z. ~5!

If we put this ansatz into Eq.~3!, assume that the system
an integral number of wavelengths in thez direction, and
minimize with respect to the amplitudeA0, we obtain the
results,

A0
25

4e

3
, ~6!

^c0
2&5

q0

2pE0

2p/q0
~A0 cosq0z!2dz5

2e

3
, ~7!

and

Eeq52
e2

6
S, ~8!

whereS is the area of the system. Pomeau and Mannev
@8# have shown that this is a very good approximation for
‘‘ground’’ state even for moderately large values ofe. In the
growth kinetics context the approach to equilibrium is mo
tored by

DE~ t ![E~ t !2Eeq}LE
21~ t ! ~9!

and

Dc2~ t ![^c0
2&2^c2& t}Lc

21~ t !, ~10!

whereLE(t)}Lc(t) @9#.
Another measure of the ordering in the system is given

considering the director field
03610
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n̂~x!5
“c~x!

u“c~x!u
, ~11!

and the associated nematic order parameter

Qab5Q0F n̂an̂b2
1

2
dabG . ~12!

In two dimensions, however, all of the information in th
order parameter is contained in the quantity cos 2u, where
n̂5(cosu,sinu). It is easy to show, for example, that

Cnn~x,y,t ![2^Tr Q~x,t !Q~y,t !& t

5^ cos@~w~x,t !2w~y,t !#& t , ~13!

where

w~x,t !52u~x,t !. ~14!

If we define

B̂x5n̂x
22n̂y

2 , ~15!

B̂y52n̂xn̂y , ~16!

then

Cnn~x,y,t !5^B̂~x,t !•B̂~y,t !& t . ~17!

The nematic order parameter correlation functionCnn was
shown by Christensen and Bray@10# to obey scaling in the
conventional form

Cnn~r ,t !5F„r /Ln~ t !…, ~18!

wherer5x2y. Elder, Viñals, and Grant@11# showed that the
scaling of the order parameter structure factor

S~k,t !5^uck~ t !u2&5Ls~ t !F1„~k2q0!Ls~ t !… ~19!

differs from that observed in ordering system without strip
S(k,t)5L2(t)F2„kL(t)….

III. REVIEW OF PREVIOUS WORK

The early work on this problem focused on establish
the final equilibrium state reached after a quench. This
two-dimensional system and by forming stripes one ha
broken continuous symmetry. The behavior of the system
nonzero temperatures, as for the two dimensionalXY model,
requires, as pointed out by Toner and Nelson@12# a treatment
of both long wavelength fluctuations in the layers and fr
defects. Above a Kosterlitz-Thouless type transition one
an isotropic phase, while below this transition one has
phase with persistent orientational order.

In an early paper, Elder, Vin˜als, and Grant@11# carried out
a numerical analysis leading to the scaling solution given
Eq. ~19!. Working with fixede50.25 they looked at the sys
tem’s ordering as a function of noise strengthG. They found
a qualitative difference between low noise and high noi
2-2
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For the large noise case they found a rapid~exponential!
relaxation to the asymptotic stationary state and a power-
approach for the lower noise case. Their results are in ag
ment with the picture due to Toner and Nelson that one h
transition to an isotropic state for large enough noise. Th
is no real ordering in the isotropic state, and this is why th
is exponential decay to the equilibrium state. In the orde
state one has scaling and a power-law growth law which,
small noise, they found to have an exponentxs51/4. They
found a smaller exponentxs51/5 at low temperatures, bu
they had less statistics and there appeared to be ‘‘diffic
removing defects.’’ They argued for a late-time crossover
the expected x51/2, but they did not see this.

Cross and Meiron@13# also studied the SH model numer
cally in the absence of noise. They found anxs51/4 for e
50.25. The dynamics appear to freeze for highere. They
looked at the defect structure, but in a qualitative way not
the existence of domain walls rather than a set of isola
point defects. The theoretical discussion in their pape
based on the phase-field approximation

]f

]t
5~D i¹ i

21D'¹'
2 !f, ~20!

which from the most naive point of view suggests a grow
law with exponentx51/2. They discuss some selectio
mechanisms which could leadD i and D' to adjust them-
selves to zero and reducex to 1/3 or 1/4. They concluded
that they did ‘‘not have a good theoretical understanding
these results’’ and suggested that the defects in the prob
should be treated explicitly.

Hou, Sasa, and Goldenfeld~HSG! @6# confirmed previous
numerical results which showed fore50.25, xs51/5 with
zero noise, andxs51/4 with nonzero noise as obtained fro
the structure factor scaling. They went further and use
simple method to identify domain walls and measure th
lengths~more about this below!. They measured excess e
ergy DE(t) and the domain wall length, and found that th
show the same scaling exponents 1/4 at zero noise and 0
nonzero noise. The energy does go to the lowest ordere
value of2e2/6 in the noiseless limit. They find ‘‘defects ar
indeed the driving force behind the coarsening process du
its dominant contribution to the excess energy.’’ They su
gest that the phase-field approach gives the wrong expon
because it does not include the effects of defects. For large
(50.75) they found much slower logarithmic growth. Th
system seems to become glassy.

Christensen and Bray@10# also carried out numerica
work on the SH model fore50.25 and foundxs51/5 for
zero noise andxs51/4 for nonzero noise. From scaling o
thedirector correlation function they find exponents are 0.
and 0.30 for zero and nonzero noise. They suggest that t
is a crossover tox51/2 at very long times. The theory the
developed does not include defects.

Boyer and Viñals @7# point out ‘‘Near the bifurcation
threshold, the evolution of disordered configurations is do
nated by grain boundary motion through a background
largely immobile curved stripes.’’ They find for smalle an
exponentx51/3 which they interpret as arising from a la
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of grain boundary motion@14#. Elsewhere@15#, they also
point out for larger values ofe, the dynamics cross over to
frozen state with quenches to zero temperature. This gla
behavior is associated with grain boundary pinning.

IV. NUMERICAL RESULTS FOR SH MODEL

We present here our numerical results for the SH eq
tion. We follow the numerical prescriptions of Bray an
Christensen@10#. We use the finite difference scheme o
two-dimensional lattice of sizes 2563256 and 5123512
with periodic boundary conditions. We sete50.1, Dr
5p/4, and Dt50.03. We replace] tc(r ,t) by (c i j

n11

2c i j
n )/Dt, and¹2c(r ,t) by

¹2c i j 5
1

~Dx!2 F2

3 (
NN

1
1

6 (
NNN

2
10

3 Gc i j , ~21!

where NN and NNN mean the nearest neighbors and n
nearest neighbors, respectively. By choosing the proper s
of time, space, and the order parameter, we can setq051.
The systems have eight grid points per wavelength. We u
uniformly distributed random initial conditions.

For the smaller 2563256 systems we were able to follow
the ordering process to very late stages. Some of the in
pendent trials proceed to a final state where we have a s
well aligned layers.

In Fig. 1 we plotDE(t) andDc2(t) for an ensemble of
runs on a 2563256 lattice. We note that there are two r
gimes whereLE defined by Eq.~9! is described by different
exponents. Forts,t,tc (ts'300 and tc'9000) we find
xE'0.3, while for t.tc we find xE'0.5. The crossover a
t'tc appears to be due to the finite-size effects, as we
cuss below. Fort.tc the system is effectively anisotropi
and we find an effective exponentxE near 1/2.

In Fig. 2 we plotDE(t) andDc2(t) for a 5123512 sys-
tem. In this case we see thattc has been extended to muc
larger values and we have not been able to follow the ord
ing process to completion. Our fits toDE(t) andDc2(t) in
the regime ts,t,tc again gives, to higher accuracy,xE
5xc51/3.

To probe directly the stripes’ increasingly orientation
order, we measure thenematicorder parameter correlatio
functionCnn(r ,t) in the 5123512 system. The results, ave
aged over 57 runs, are shown in Fig. 3. We obtain sca
with a correlation length obeying the growth lawLn}t0.36.
We can estimate the timetc when the crossover begins in th
larger system as follows. The system becomes anisotr
and one expects crossover when the correlation lengthLn
grows to be some substantial fraction of a lateral dimens
of the system. In terms of ratios we can write

Ln„tc~512!…

Ln~ tc~256!!
'

512

256
5F tc~512!

tc~256! G
1/3

. ~22!
2-3
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In the 2563256 system tc(256);9000, so we obtain
tc(512);60 000. Notice that in Fig. 2 the effective expone
xE begins to increase at time 50 000–70 000, which is c
sistent with our estimate.

In Fig. 4 we plot the structure factorS(k,t) and show that
scaling holds in the form given by Eq.~19! with a growth
law characterized by an exponentxs50.24 as shown in the
inset. Our results here agree with those found previously
the exponent governing the growth law for the structure f
tor is significantly smaller than that governing the nema
order parameter.

V. DEFECT STRUCTURES AND DYNAMICS

In Fig. 5 we show a typical configuration for the Swif
Hohenberg model for a quench to zero temperature aft
time 12 000 for a 5123512 system. Notice the rather com
plicated structure which includes dislocations, disclinatio
and grain~domain! boundaries. Our main focus in this pap
is to study the statistics of these defects. In Appendix A
discuss an algorithm for picking out the defects and track
their motions.

If we look at Fig. 5 we see that it shows a complicat
situation with a variety of different defect structures whi
can be identified by eye at the length scale of several la

FIG. 1. ~Color! DE(t) and Dc2(t) for a 2563256 system.
Straight lines are used to fit different parts. Averaged over 40 tri
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spacings. At a more fundamental level we need a way
identifying which points in space, at the level of each site
the numerical grid, are part of a defect. At the shortest len
scale in the problem the order parameter isQab defined by

s.

FIG. 2. ~Color! DE(t) andDc2(t) for a 5123512 system. The
data fort,ts are not shown. The straight lines are used to guide
eye. Averaged over 57 different trials.

FIG. 3. Time evolution of the correlation functionCnn(r ,t) in
the 5123512 SH system illustrated with times 63103,1.2
3104,1.83104 increasing from left to right. We extract the tim
evolution of the correlation lengthL(t) by monitoring ther a(t) for
which Cnn„r a(t)…5a, where we choosea5$0.3,0.4,0.5,0.6,0.7%.
The scaling exponentxn is extracted from the log-log plot inset o
r a(t) vs t by fitting it with a straight line. Averaged over 57 trials
2-4
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DEFECT STRUCTURES IN THE GROWTH KINETICS OF . . . PHYSICAL REVIEW E 67, 036102 ~2003!
Eq. ~12!. For this two-dimensional system this can be
placed by the vector order parameterB̂ defined by Eqs.~15!
and ~16!. The assumption is that all of the defects in t
system can be built up from the6 1

2 disclinations in the
director fieldn̂ which translate into vortices with charge61
for the field B̂. We identify these defects by looking for th
cores of the vortices. We can find the cores of the defects
looking from those sites whereB̂ is changing rapidly. We can
define

A5(
a,b

~¹aBb!2, ~23!

FIG. 4. ~Color! The structure factorS(k,t)5^uc(k,t)u2& in the
5123512 system. The log-log plot ofS(q0 ,t) vs t can be fit totx

with x50.24. The scaling collapse of the structure factor was
tained withx50.24 as the scaling exponent. Averaged over 57
dependent trials.

FIG. 5. A typical configuration for the SH model for a quench
zero temperature aftert512 000 in a 5123512 system. The black
points correspond toc(x).0 and the white points toc(x),0.
03610
-

y

and identify defect points as those sites whereA is larger
than some value. Notice thatA can also be written in the
form

A54(
a,b

~¹anb!25~¹aw!2. ~24!

The precise numerical determination ofA is discussed in
Appendix A. Notice thatA is proportional to the gradien
energy for an isotropic nematic.

In analyzing their experimental data Harrisonet al. @2,3#,
found a set offundamentaldisclinations and from these bui
up dislocations as bound disclinations with opposite cha
They used this procedure to identify a large dislocation d
sity. Most of the fundamental disclinations went into formin
these dislocations since in the end the ratio of dislocation
the remaining disclinations was about 10–1. In our case
situation is complicated by the grain boundaries. We fi
separate the defects into compact point defects and la
grain boundaries. For the point defects we determine the
pological charge by taking the usual phase-angle path i
gral around the center of mass of the defect. Those def
with plus or minus unit charge are identified as disclinatio
while those with zero charge are dislocations. Then we
track the motion of each single defect.

As an example of the method we show in Fig. 6 the p
of a dislocation. We see that some dislocations travel o
long distances during very long times. It seems that the
locations are more stable when compared to grain bounda
and disclinations. Our simulations on 2563256 system show
that after the annihilation of point defects and grain boun
aries, some dislocations still exist in the system. Our sim
lations show that there are also dislocations which are pin
and move little.

The number of disclinatins is quite small. And we noti
that they are rather immobile, which is consistent with Boy
and Viñals’ discussion@7#.

The most important motion of grain boundaries is th
they can move over long distances and combine with ot
grain boundaries. As shown in Fig. 7, two grain boundar

-
-

FIG. 6. A typical example of the track of a dislocation’s ‘‘mas
center,’’ see Appendix A. The dislocation moves along the arrow
starts att51590 and disappears att529 220. Notice the small arcs
along the curve, the diameters of the arcs are about 2p, which is
equal to two layer spacing.
2-5
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H. QIAN AND G. F. MAZENKO PHYSICAL REVIEW E67, 036102 ~2003!
can combine to form a larger grain boundary. Thus the nu
ber of grain boundaries decreases while their average
increases. This process happens at a time scale of the
of 1000 dimensionless time units.

As shown in Fig. 8, one grain boundary can sweep acr
a quite large area. At the same time its size decreases.
process occurs at a time scale of the order of 10 000. Acc
ing to our observations, the grain boundaries’ motions a
relieve the stripe curvatures through disclination annih
tions. After one grain boundary passes through a disclinat
the disclination disappears. This is consistent with Boyer
Viñals’ prediction@7#.

Next we focus on the statistics of the defects generated
the model. In Fig. 9 we plot the total number of points
grain boundaries, dislocations, and disclinations separa
for the 2563256 system. We see that the grain boundar
dominate. In the scaling regime (ts,t,tc), we see that the
number of points corresponding to grain boundaries and
defect points, the curvesa andb can be fit to;t21/3. At late
stages the disclinations disappear, while the dislocations
grain boundaries persist. The number of disclinations
creases much faster than the other defects.

FIG. 7. The combination of two grain boundaries in
5123512 system. The portion shown is 2003200. From left to right
and top to bottom, the times aret52880,2955,3030,3105,3180
4710. Not all the points in the grain boundaries are shown.
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FIG. 8. The motion of a grain boundary in a 5123512 system.
The portion shown is 2003200. From left to right and top to bot
tom, the times aret511 415,13 665,15 915,18 165,20 415,22 66
24 915,27 165,29 415. Again not all the points in the grain bou
ary are shown.
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In Fig. 10 we plot the average number of grain boundar
n̄ and the average size of a grain boundaryl̄ for the
2563256 system. We use the number of points in one gr
boundary as a measure of its size. Forts,t,tc , n̄ decreases
but l̄ increases due to the combining of grain boundar
The shrinkage of their sizes is not as important as the c
binations. However, fortc;9000 the correlation lengthLn is
the same order as the system’s size, and the large g
boundaries stop growing. After that the shrinkage is imp
tant @16#. In the scaling regime (ts,t,tc), n̄;t20.45 and l̄

;t0.13. So n̄ l̄ ;t21/3, which is consistent with Fig. 9.
In Fig. 11 we plot the total number of points in gra

boundaries, dislocations, and disclinations separately for
5123512 system. The number of points in disclinations
much smaller than that of dislocations, and at very late sta
it decreases to the order of 1, which in fact indicates
disappearance of disclinations. Now the scaling regime
tends to much longer times. The domain walls and dislo
tions’ scaling exponents are both 1/3, which is same to
scaling of the energy. However, the scaling exponent of
clinations, given by 0.57 is much larger. So we conclude t
disclinations are not the dominant structures in SH syste

FIG. 9. ~Color! The number of points in point defects and gra
boundaries in the 2563256 system. The data for all defects an
domain walls are averaged over 40 trials. The others are aver
over 38 trials.

FIG. 10. The average number of grain boundaries and the a
age number of points in a grain boundary. 2563256 system aver-
aged over 40 trials.
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In Fig. 12 we plot the number of grain boundariesn̄ and
the average size of a grain boundaryl̄ for 5123512 system.
All of our data fall in the scaling regime. The plot of th
average numbern̄ of grain boundaries versus timet, can be
fit to n̄;t20.49 and the average sizel̄ vs timet, can be fit by
l̄ ;t0.17. So we haven̄ l̄ ;L21;t21/3, which is consistent
with the results shown in Fig. 11.

Although we did not count the number of disclination
directly, it is proportional to the number of lattice points
disclinations, i.e.,t20.57. This is because the average numb
of lattice points in one point disclination, which is abo
10–20, is quite stable during the simulation. By the sa
reasoning, we find that the number of dislocations is prop
tional to t21/3. It is interesting to note that the number o
grain boundaries scales ast20.49. This exponent is near to
that for disclinations.

The number of grain boundaries is about 5 att;70 000,
the number of disclinations is about 0 or 1 att;50 000, and
the number of dislocations is on the order of 10 att
;50 000, as can be seen in Figs. 11 and 12.

Since we can track the motion of each defect, we c
measure their speeds. We define the speed of each a

ed

r-

FIG. 11. ~Color! The average number of points in defects a
grain boundaries in the 5123512 system. Most of the points are i
grain boundaries. All the curves can be fit tot2y. The data for
defects and domain walls are averaged over 57 trials, and the o
data are averaged over 20 trials.

FIG. 12. n̄ and l̄ vs time in the 5123512 system. The data ar
averaged over 57 independent trials.
2-7
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speed of its mass center~see Appendix A for the definition o
‘‘mass center’’!. If in a timeDt, the mass center travels ove
a distanceDd, then the speed isv5Dd/Dt. If Dt is small
enough, we found thatv50 has the biggest probability. I
Dt is large enough, all the details are coarse-grained, and
observe a continuous distribution of the speed and the lar
probability appears at a nonzero speed, as shown in Fig
whereDt560. We measured the speed distributions of d
main walls, and point defects separately. As we have alre
seen, for point defects the number of disclinations is mu
smaller than that of dislocations, so what we measure in
latter case is in fact the speed distribution of dislocations

The speed distribution has a long tail which decreases
power law. The numerical fits at different times give us d
ferent exponents. However the tail exponents at differ
times do distribute in a narrow region, as shown in Fig.
The exponents of grain boundaries are quite different fr
those of point defects. If we ignore the exponents at v
early times when grain boundaries just begin to form, and
the very late times when the grain boundaries have alre

FIG. 13. ~Color! A typical example of probability densityP vs
speedv for the speed distribution of dislocations at time 1350
the 5123512 system. The distributions at other times have appro
mately the same shape. Averaged over 56 trials.

FIG. 14. ~Color! The power-law exponents of the speed dist
bution’s tail at different times. Ignoring the data points at very ea
times and very late times, the mean value of the exponent
21.5 for grain boundaries,22.1 for point defects, and21.7 for all
the defects. Averaged over 61 independent trials.
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disappeared, the mean value of the grain boundaries’ ex
nents is 21.50 and that of point defects’ exponents is
22.10.

We also measured the average speed of the point de
and grain boundaries as a function of time after the quen
as is shown in Fig. 15. The average speed of point def
decreases as;t20.48; the average speed of grain boundar
goes as;t20.35. The scattering of the points at late stages
due to the small data sample at those times.

VI. SUMMARY

We have studied the dynamics of the defect structure
the SH model after quenches to zero temperature with a c
trol parameter ofe50.1. We find in agreement with earlie
workers that the kinetics in the ordering regime, befo
finite-size effects enter, are dominated by the existence
moving and coalescing grain boundaries. In this regime
average size of these grain boundaries is growing and
are relatively mobile. Under the influence of finite-size e
fects these grain boundaries shrink, the system becomes
isotropic and the ordering process speeds up.

We also measured the speed distribution of all structu
that appear in the system. The average speed is decreas
a power law and the distributions show a power-law beh
iors at large speeds. However, we can only get a rough e
mate due to the poor statistics.

Let us return to the question of whether the SH mo
gives a good description of the physical system studied
Harrisonet al. @2,3#. The SH model, for small control param
etere, does give coarsening with an exponent in roughly
same range as in the experiment (1/4;1/3). The ordering is
constrained to be slower than the picture where one ha
simple point defect pair annihilation process. However,
defect structures in the SH model and experiment app
quite different. The disclination quadrapole annihilatio
seen in experiments are not observed in the late stages o
evolution of the SH model. In the SH model grain boun

i-

is

FIG. 15. ~Color! The average speed for defects and grain bou
aries. From top to bottom, the curves have the formv03t2x with
v0 being a constant. From top to bottom,x50.3560.01, x50.41
60.01, andx50.4860.01. Averaged over 56 independent trials
2-8



es
nt
y
r

te
h
is
m
ve
iv
ri-
A
e

he

of
nc

to
t

o
ts

th

th

er

-

o-

e

ess

ons
es.

n

sors
.

er-
-

g

ore
-

lude
s of
f a

DEFECT STRUCTURES IN THE GROWTH KINETICS OF . . . PHYSICAL REVIEW E 67, 036102 ~2003!
aries dominate the evolution in the scaling regime, but th
structures appear to play a limited role in the experime
We must make clear that our numerical results are for s
tems with many fewer roll periods compared to the expe
mental systems (102 compared to 105), so it is possible that
things change as we increase the size of the ordering sys
However, our study of 256 and 512 systems shows that t
differ only in the time when the finite-size effect enters. Th
indicates that a even larger system will display the sa
behavior except that the finite-size effect enters at a e
later time. So we conclude that the SH model does not g
a physically faithful description of the ordering in the expe
mental system. This raises the provocative question:
there many different types of scenarios for ordering strip
systems? We will address this question by looking at ot
competing models for striped formation elsewhere.

ACKNOWLEDGMENTS

We thank Dr. C. Harrison for providing us with a copy
his thesis. This work was supported by the National Scie
Foundation under Contract No. DMR-0099324.

APPENDIX A: THE ALGORITHM FOR PICKING OUT
DEFECTS AND FINDING DOMAIN WALLS

Hou et al. @6# proposed a method, the HSG method,
measure the length of grain boundaries. They computed
quantityA2[c21(“c)2/q0

2, and if the calculatedA2 is big-
ger than an upper filter 0.7@(A2)max#10.3@(A2)ave# or smaller
than a lower filter 0.7@(A2)min#10.3(A2)ave, that point is
counted as belonging to a domain wall. Whene is small, this
method gives quite good results.

However, whene increases, the original filters are n
longer applicable. They fail to pick out most of the poin
and the filters must be rechosen. For example, ate50.6, the
filters 0.5(A2)max10.5(A2)ave and 0.5(A2)min10.5(A2)ave
can give a satisfying result; while fore50.75, 0.4(A2)max
10.6(A2)ave, and 0.4(A2)min10.6(A2)ave are the better
choices. Sometimes this method is unable to pick out all
defects for any choice of filter.

We introduce here a method which works for alle and
picks out all of the defects and nothing more.

First let us define some useful quantities. Suppose
system is discrete on thex-y plane, withx5( i , j ) ~square
lattice!. At a fixed time, starting from the order paramet
field c(x)5c i , j , we can define a director fieldn̂(x) as given
by Eq. ~11!, where“c(x) is defined by the usual finite dif
ference scheme, i.e.,

“c~x!5S c i 11,j2c i 21,j

2Dr
,
c i , j 112c i , j 21

2 Dr D , ~A1!

where Dr is the lattice space of the system. In tw
dimensional cases the nematic order parameterQab is com-
pletely specified by the angle

w~x!52u~x!, ~A2!
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where

u~x!5arctanS n̂y~x!

n̂x~x!
D . ~A3!

Rather than usingw(x) given by the two equations above w
introduce some local smoothing. First we compute

B̂y5sinw~x!52n̂x~x!n̂y~x!,

B̂x5cosw~x!52n̂x~x!221. ~A4!

Then we smooth these two fields using the iterative proc

f (n11)~ i , j !5
1

2
f (n)~ i , j !1

1

8 (
( i 8, j 8)PNN

f (n)~ i 8, j 8!,

~A5!

where f (n) is sinw or cosw aftern iterations, and NN means
the four nearest neighbors of (i , j ) on the square lattice. This
process will suppress the small fluctuations ofw(x) away
from the defects, while the variation ofw(x) near a defect
core remains large. Our calculations show that five iterati
provides a sufficiently smooth set of fields for our purpos
In the next step, we calculatew(x) from sinw(x) and
cosw(x) using

w~x!5arctanF sinw~x!

cosw~x!G , ~A6!

where we adopt the convention that2p,w(x),p.
In picking a filter we want to look at the spatial variatio

of the w(x) field. “w(x) can be evaluated as for¹c(x).
However, there is a subtlety here. For example, ifw i 11,j
5p2df1 andw i 21,j52p1df2, wheredf1 anddf2 are
small angles, then the difference between the nematic ten
Qab( i 11,j ) and Qab( i 21,j ) should be a small quantity
But (w i 11,j2w i 21,j )/25p2(df11df2)/2;p, which
means that if we calculate the change rate ofw(x) in exactly
the same way as in Eq.~A1!, we will get a wrong answer in
this context. To avoid such a problem, we define the diff
ence betweenw(x) andw(x8) as the quantity with the small
est absolute value among the choicesw(x8)2w(x) and
w(x8)2w(x)62p. And we use this quantity in determinin

A~x!5u“w~x!u2, ~A7!

which is the key quantity in our analysis.
Our method is based on the observation that at the c

region of a defect~dislocation, disclination, or part of a do
main wall!, the angle fieldw(x) changes rapidly, while in the
region away from the defect’s core, thew(x) field is rather
smooth, as can be seen in Fig. 16. Thus we can conc
with confidence that those points with larger change rate
w(x) must belong to some defect’s core region or a part o
grain boundary.
2-9
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H. QIAN AND G. F. MAZENKO PHYSICAL REVIEW E67, 036102 ~2003!
We find thatA(x)'0 away from defects, but increase
very rapidly in the vicinity of any defect. An example
given in Fig. 17. Therefore, as long asA(x) is large enough,
we can identify the pointx5( i , j ) as part of the core region
of a defect. Naturally we set up a thresholdA0, and any point
with 4(Dr )2A(x).A0 is counted as belonging to some d
fect’s core. Because the value ofA(x) is much larger in the
defects’ cores than at any other places, a range of value
A0 can be used to find the positions of the defects core
gions. With a smaller threshold the program will pick o
more points in the core regions, and with a larger one it w
pick out fewer points in the core regions. Our experien
shows that ifA0 takes the value of 2;10, the program picks
out the same defects cores and grain boundaries. As is sh
in Figs. 18 and 19, it picks out all the defects without irre
evant points.

After we have used the above algorithm to pick out t
points in the core regions of the point defects and gr
boundaries, we can distinguish between these two structu
The difference between them is obvious. The point defe
are compact in space while the grain boundaries are rami

First, we must group the points we have identified acco
ing to whether or not they are in the same structure. T
points in one point defect core or grain boundary are pic
out because the director field changes drastically on th
sites. They are very near to each other. However, they m

FIG. 16. In the lower graph, the vector field@cosw(xW),sinw(xW)#
for the order parameter field shown above. The components o
vector field have been smoothed over five iterations. The lat
spacing isp/4, which means there are eight points in one period
the layers. Not all the vectors on the lattice are shown.
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not be neighbors. So we define a filtera0, and when any two
points’ distance is less thana0, they are supposed to be in th
same defect or grain boundary’s core region. We use
cluster multiple labeling method of Hoshen and Kopelm
@17# to pick out such point clusters. Thus given the system
status at any time, we can find those sets of points co
sponding to each individual defect or grain boundary.

Now we measure the approximate size of these structu
and then distinguish between point defects and grain bou
aries. We use the number of points in the set as the size o

he
e
f

FIG. 17. ~Color! In the lower graph, the scalar fieldA(xW ) is
plotted. This corresponds to the order parameter field shown ab

A(xW ) is sharply peaked at the core regions of the defects.

FIG. 18. ~Color! Identification of all the defects in a 5123512
system (e50.1) with a thresholdA053.5. At each defect core re
gion, theA field for many points exceeds the threshold. The r
points belong to domain walls, the green ones belong to dislo
tions, and the blue ones belong to disclinations.
2-10
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DEFECT STRUCTURES IN THE GROWTH KINETICS OF . . . PHYSICAL REVIEW E 67, 036102 ~2003!
corresponding structure. This approximation reflects the
tual size of the defect or grain boundary quite well. Then
define a filterl 0, and when the structure’s size is larger th
l 0, we regard the corresponding structure as a grain bou
ary, otherwise it is taken to be a point defect~dislocation or
disclination!.

We employeda055 Dr , whereDr is the lattice spacing
and l 0518. The results are quite satisfying.

After we have picked out the point defects, we can dev
them into disclinations and dislocations. We follow Har
son’s method@2,3#. Given the angle fieldw(x) computed in
Eq. ~A6! after the smoothing process, we do an integral
the variation ofw(x) over a counterclockwise close pa
around the mass center of a point defect, which is defi
below. The condition for a defect to be a disclination is

R ]w

]s
ds562p. ~A8!

The integral is zero if the defect is a dislocation. To make
computation easier, we choose a 16316 square with the
mass center at its center as the integration route.

To record the motion of one single defect or grain boun
ary, we track the motion of the corresponding point se
mass center, which is defined as follows. Suppose the p
set hasn points with coordinatesr i , i 51,2, . . . ,n. Then the
mass center of the point set is defined asr5( ir i /n, just like
the usual mass-center definition in classical mechanics,
with all masses equal to one.

In the evolution of the SH model, we sample the syst
every 500 time steps~in our case this is equal to 15 dimen
sionless time units!, which is a quite short-time period in th

FIG. 19. ~Color! Identification of all the defects in a 5123512
system (e50.5) again with a thresholdA053.5. Apparently the
defect’s density in this system is greater than the density in Fig.
The domain walls are much smaller for the system with largere.
There are no domain walls fore.0.6.
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simulation. We then identify all the dislocations, disclin
tions, and grain boundaries, distinguish among them,
compute theircenters of mass. Suppose at timet1, we have
the set ofmass centers P5$pi , i 51,2, . . . ,n1% and at time
t2, the mass center set isQ5$qj , j 51,2, . . . ,n2%; usually
n1Þn2. DefinedPQ( i , j )5upi2qj u. We assume that the de
fects and grain boundaries do not move much in suc
short-time period. So if there exist two integerskP@1,n1#
and l P@1,n2#, such that

dPQ~k,l !5 min
j P[1,n2]

dPQ~k, j !5 min
i P[1,n1]

dPQ~ i ,l !, ~A9!

it is quite reasonable to believe thatpk and ql are just the
same defect’s or grain boundary’s mass center at two suc
sive times. Using this method, we are able to find out
trajectories of the mass centers as time goes on. Not
points in P and Q can be grouped into such pairs. On o
hand, this is becausen1Þn2; on the other hand, this is als
due to criterion~A9! applied ontopk andql . Physically, this
is consistent with the phenomena of the defect annihilat
and the combination, split and shrinkage of grain boundar

APPENDIX B: MEASUREMENT OF THE NEMATIC
CORRELATION FUNCTION

To probe the stripes’ increasingly orientational order,
define the correlation function that is similar to that em
ployed by Christensen and Bray@10#:

Cnn~r ,t !5
1

N2 (
x

^cos@w~x1r ,t !2w~x,t !#&

5
1

N2 (
x

^cosw~x1r ,t !cosw~x,t !&

1
1

N2 (
x

^sinw~x1r ,t !sin~x,t !&, ~B1!

whereN2 is the area of the system and the angular brack
denote the statistical average over different initial conditio
The definition of the anglew(x) is given in Appendix A.

Now in Eq.~B1! the function has been split into two par
which have the same form,

G~r ,t !5
1

N2 (
x

^ f ~x1r ,t ! f ~x,t !&, ~B2!

with f (x,t)5cosw(x,t) and f (x,t)5sinw(x,t) separately.
Equation~B2! can be easily calculated by fast Fourier tran
formation ~FFT!. First FFT f (r ,t) is to obtain its Fourier
componentsf̃ (k,t). Then G̃(k,t)5^u f̃ (k,t)u2&, and inverse
Fourier transformation givesG(r ,t). We compute the two
parts in Eq.~B2! separately, and then add to obtain the c
relation functionCnn(r ,t).

8.
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